

Revealing deformation mechanisms of FCC alloys at low temperature range: *in situ* neutron diffraction

Lei Tang^{1*}, Biao Cai¹, Kun Yan², Yiqaing Wang³, Saurabh Kabra⁴

1. School of Metallurgy and Materials, University of Birmingham, B15 2TT, UK

2. School of Materials, University of Manchester, M13 9PL, UK

- 3. Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX13 3DB, UK
- 4. ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK

*Corresponding mail address: LXT879@student.bham.ac.uk

- [1] Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta Mater. 52 (2004) 4589–4599.
- [2] J. Liu, C. Chen, Y. Xu, S. Wu, G. Wang, H. Wang, Scr. Mater. 137 (2017) 9–12.
- [3] H.Y. Um, J.B. Seol, H.S. Kim, J.W. Bae, J. Moon, B.-J. Lee, S.S. Sohn, M.J. Jang, Acta Mater. 161 (2018) 388–399.

Sackground Introduction: why neutrons?

5. H.K. Zhang, F. Long, Z. Yao, M.R. Daymond, J. Microsc. (2013).

6. Nuclear Deterrence – U.S. Policy and Strategy

Experiment design: in situ neutron diffraction

 \geq

Case 1

xperiment design: high Mn steel

Case 1. High Mn steel: (Fe-24Mn)

- Promising mechanical performance.
- High potential of activating multiple strengthening mechanisms.
- ➢ Wide industrial application.

The typical IPF map shows the as-received microstructure of the TWIP steel

Case 1

Kesults: Mechanical performance

Science & Technology Facilities Council ISIS Neutron and Muon Source

Case 1

Results: Diffraction Patterns

Kesults: Lattice Strain and Stacking Fault Probability

Lattice strain evolution of grain plane (111) and (222) from axial and radial direction and stacking fault probability evolution of the high entropy alloy during tensile testing at different temperatures: (a) 77 K (b) 15 K: (a) 373 K (b) 293 K (c) 173 K (d) 77 K.

Results: Twinning Formation

At same strain level, the twinning density increases with the decreasing of deforming temperature.

Typical optical images of the TWIP steel deformed with different strain and different temperature: (a) 0.01, 293 K; (b) 0.1, 293 K; (c) 0.3, 293 K; (d) 0.01, 77 K; (e) 0.1, 77 K; (f) 0.3, 77 K

Science & Technology Facilities Council ISIS Neutron and Muon Source

Results: Twinning and phase transformation Case 1

Typical bright field TEM image of the TWIP steel deformed at (a) 373 K and (b) 77 K with strain of ~0.3.

Muons

Science & Technology Facilities Council ISIS Neutron and Muon Source

Cas

Kesults: Twinning and phase transformation

Twinning formation and phase transformation process ($\gamma \rightarrow \epsilon$) of the TWIP steel deformed at 77 K (strain of ~0.3) revealed by HRTEM images.

Case 2

Experiment design: high entropy alloy

- 2. High entropy alloy: (FeCoCrNiMo_{0.2})
- Promising mechanical performance.
- New design concept.
- Many intriguing features: sluggish diffusion effect, 'Cocktail' effect...

Typical IPF image shows the as-received high entropy alloy prepared by powder metallurgy [7]

[7] B. Cai, B. Liu, S. Kabra, Y. Wang, K. Yan, P.D. Lee, Y. Liu, Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction, Acta Mater. 127 (2017) 471–480. https://doi.org/10.1016/j.actamat.2017.01.034.

Case 2

Kesults: Mechanical performance

2.2 10 (a) 15 K 2 Stage I Stage II Stage III Strain Hdrdening Rate [×10³] 77 K 0 8 1.8 293 K 1.6 6 Stress [GPa] 1.4 1.2 4 00 1 0.8 2 15 K-Engineering 0.6 15 K-True Fb--77 K-Engineering 7-9 0.4 0 77 K-True 293 K-Engineering 0.2 293 K-True 0 -2 0.1 0.2 0.3 0.4 0.6 0.7 0.2 0.4 0.6 1.6 0 0.5 0.8 0.8 1.2 1.4 1.8 2.2 2 1 True Stress [GPa] Strain Mechanical performance of the high entropy alloy^[8] at different temperatures^[8]

Muons

[8] L. Tang, K. Yan, B. Cai, Y. Wang, B. Liu, S. Kabra, M.M. Attallah, Y. Liu, Deformation mechanisms of FeCoCrNiMo0.2 high entropy alloy at 77 and 15 K, Scr. Mater. 178 (2020) 166–170. https://doi.org/10.1016/J.SCRIPTAMAT.2019.11.026.

Results: Diffraction Patterns

Case 2

The diffraction pattern change indicates the phase transformation process (from γ to α') occurred during deforming at 15 K.

[8] L. Tang, K. Yan, B. Cai, Y. Wang, B. Liu, S. Kabra, M.M. Attallah, Y. Liu, Deformation mechanisms of FeCoCrNiMo0.2 high entropy alloy at 77 and 15 K, Scr. Mater. 178 (2020) 166–170. https://doi.org/10.1016/J.SCRIPTAMAT.2019.11.026.

Lase Z

Kesults: Lattice strain and SFP evolution

Lattice strain evolution of grain plane (111) and (222) from axial and radial direction and stacking fault probability evolution of the high entropy alloy during tensile testing at different temperatures: (a) 77 K (b) 15 K. [8] Argus

Muons

[8] L. Tang, K. Yan, B. Cai, Y. Wang, B. Liu, S. Kabra, M.M. Attallah, Y. Liu, Deformation mechanisms of FeCoCrNiMo0.2 high entropy alloy at 77 and 15 K, Scr. Mater. 178 (2020) 166–170. https://doi.org/10.1016/J.SCRIPTAMAT.2019.11.026.

[8] L. Tang, K. Yan, B. Cai, Y. Wang, B. Liu, S. Kabra, M.M. Attallah, Y. Liu, Deformation mechanisms of FeCoCrNiMo0.2 high entropy alloy at 77 and 15 K, Scr. Mater. 178 (2020) 166–170. https://doi.org/10.1016/J.SCRIPTAMAT.2019.11.026.

Kesults: Stacking Fault energy *v.s.* temperature

Stacking fault energy ching ution of the Total Eustreich and bigs of the phigheon tride yespect to temperature.

[7] L. Tang, K. Yan, B. Cai, Y. Wang, B. Liu, S. Kabra, M.M. Attallah, Y. Liu, Deformation mechanisms of FeCoCrNiMo0.2 high entropy alloy at 77 and 15 K, Scr. Mater. 178 (2020) 166–170. https://doi.org/10.1016/J.SCRIPTAMAT.2019.11.026.

- **1. Significant improvement of mechanical properties.**
- 2. Strengthening mechanism changing.
- 3. Relationship between SFE and temperature.

Thanks for listening!

*Corresponding mail address: LXT879@student.bham.ac.uk